United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS A NOTE ON HERMITIAN-EINSTEIN METRICS ON PARABOLIC STABLE BUNDLES

نویسندگان

  • Jiayu Li
  • Abdus Salam
چکیده

Let M be a compact complex manifold of complex dimension two with a smooth Kahler metric and D a smooth divisor on M. If E is a rank 2 holomorphic vector bundle on M with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E' = E|M\D compatible with the parabolic structure, and whose curvature is square integrable. MIRAMARE TRIESTE January 2000

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NUMERICAL SOLUTION OF DISCRETE-TIME ALGEBRAIC RICCATI EQUATION

In this paper, we present a naturally numerical method for finding the maximal hermitian solution X+ of the Discrete-Time Algebraic Riccati Equation (DTARE) based on the convergence of a monotone sequence of hermitian matrices. MIRAMARE TRIESTE August 1999 E-mail: [email protected] 227 Nguyen Van Cu, Q5, HCMC, Vietnam.

متن کامل

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SELF-CONSISTENT NONLINEARLY POLARIZABLE SHELL-MODEL DYNAMICS FOR FERROELECTRIC MATERIALS

We investigate the dynamical properties of the polarizable shell-model with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derived which demonstrates the presence of a first-order phase transition for the potassium s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005